High-Level Pressure Support Ventilation Attenuates Ventilator-Induced Diaphragm Dysfunction in Rabbits
نویسندگان
چکیده
BACKGROUND The effects of different modes of mechanical ventilation in the same ventilatory support level on ventilator-induced diaphragm dysfunction onset were assessed in healthy rabbits. METHODS Twenty New Zealand rabbits were randomly assigned to 4 groups (n = 5 in each group). Group 1: no mechanical ventilation; group 2: controlled mechanical ventilation (CMV) for 24 hours; group 3: assist/control ventilation (A/C) mode for 24 hours; group 4: high-level pressure support ventilation (PSV) mode for 24 hours. Heart rate, mean arterial blood pressure, PH, partial pressure of arterial oxygen/fraction of inspired oxygen and partial pressure of arterial carbon dioxide were monitored and diaphragm electrical activity was analyzed in the 4 groups. Caspase-3 was evaluated by protein analysis and diaphragm ultra structure was assessed by electron microscopy. RESULTS The centroid frequency and the ratio of high frequency to low frequency were significantly reduced in the CMV, A/C and PSV groups (P < 0.001). The percent change in centroid frequency was significantly lower in the PSV group than in the CMV and A/C groups (P = 0.001 and P = 0.028, respectively). Electromyography of diaphragm integral amplitude decreased by 90% ± 1.48%, 67.8% ± 3.13% and 70.2% ± 4.72% in the CMV, A/C and PSV groups, respectively (P < 0.001). Caspase-3 protein activation was attenuated in the PSV group compared with the CMV and A/C groups (P = 0.035 and P = 0.033, respectively). Irregular swelling of mitochondria along with fractured and fuzzy cristae was observed in the CMV group, whereas mitochondrial cristae were dense and rich in the PSV group. The mitochondrial injury scores (Flameng scores) in the PSV group were the lowest among the 3 ventilatory groups (0.93 ± 0.09 in PSV versus 2.69 ± 0.05 in the CMV [P < 0.01] and PSV versus A/C groups [2.02 ± 0.08, P < 0.01]). CONCLUSIONS The diaphragm myoelectric activity was reduced in the PSV group, although excessive oxidative stress and ultra-structural changes of diaphragm were found. However, partial diaphragm electrical activity was retained and diaphragm injury was minimized using the PSV mode.
منابع مشابه
Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm
INTRODUCTION Controlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity,...
متن کاملPositive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits
INTRODUCTION Immobilization of hindlimb muscles in a shortened position results in an accelerated rate of inactivity-induced muscle atrophy and contractile dysfunction. Similarly, prolonged controlled mechanical ventilation (CMV) results in diaphragm inactivity and induces diaphragm muscle atrophy and contractile dysfunction. Further, the application of positive end-expiratory airway pressure (...
متن کاملAssist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction.
Controlled mechanical ventilation induced a profound diaphragm muscle dysfunction and atrophy. The effects of diaphragmatic contractions with assisted mechanical ventilation on diaphragmatic isometric, isotonic contractile properties, or the expression of muscle atrophy factor-box (MAF-box), the gene responsible for muscle atrophy, are unknown. We hypothesize that assisted mechanical ventilatio...
متن کاملTLR4 signaling is activated in ventilator-induced diaphragm dysfunction in rats
Inflammation is involved in ventilator-induced diaphragm dysfunction. Toll-like receptor 4 (TLR4) is an important inflammatory factor, but it remains unclear whether TLR4 contributes to ventilator-induced diaphragm dysfunction. This study aimed to investigate the role of TLR4 signaling in ventilator-induced diaphragm dysfunction. Total 30 adult male SD rats were randomly divided into control gr...
متن کاملAdaptive support ventilation prevents ventilator-induced diaphragmatic dysfunction in piglet: an in vivo and in vitro study.
BACKGROUND Contrary to adaptive support ventilation (ASV), prolonged totally controlled mechanical ventilation (CMV) results in the absence of diaphragm activity and causes ventilator-induced diaphragmatic dysfunction. Because maintaining respiratory muscles at rest is likely a major cause of ventilator-induced diaphragmatic dysfunction, ASV may prevent its occurrence in comparison with CMV. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 350 شماره
صفحات -
تاریخ انتشار 2015